Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

نویسندگان

  • Shan Gao
  • Zhongti Sun
  • Wei Liu
  • Xingchen Jiao
  • Xiaolong Zu
  • Qitao Hu
  • Yongfu Sun
  • Tao Yao
  • Wenhua Zhang
  • Shiqiang Wei
  • Yi Xie
چکیده

The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate.

Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and supe...

متن کامل

Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction

Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption cap...

متن کامل

Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction.

Ball-milled graphitic carbon, both not and electrochemically lithiated, has been studied by total x-ray diffraction involving high-energy synchrotron radiation scattering and atomic pair distribution function analysis. The experimental data has been used to guide reverse Monte Carlo simulations of the three-dimensional structure of the not-lithiated samples. Experimental and modeling results sh...

متن کامل

Electron energy loss spectra near structural defects in TiN and TiC.

In this study, we use first principles multiple scattering calculations on atomic clusters to show how the carbon and nitrogen K-edge fine structures are modified in the vicinity of structural defects in TiN and TiC. Changes in the electron energy loss spectra are due to changes in the atomic structure of the first atomic shells around the absorbing atom. Two different kinds of defects, which b...

متن کامل

Stability of irradiation-induced point defects on walls of carbon nanotubes

Using empirical-potential and tight-binding models, we study the structure and stability of atomic-scale irradiation-induced defects on walls of carbon nanotubes. Since atomic vacancies are the most prolific but metastable defects which appear under low-dose, low temperature ion irradiation, we model the temporal evolution of single vacancies and vacancyrelated defects (which isolated vacancies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017